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• Inefficient dissemination of statistical methods:
– Many good methods contributions from biostatistics, 

psychometrics, etc are underutilized in practice
• Fragmented presentation of methods:

– Technical descriptions in many different journals
– Many different pieces of limited software

• Mplus: Integration of methods in one framework
– Easy to use: Simple, non-technical language, graphics
– Powerful: General modeling capabilities

Mplus Background

• Mplus versions

• Mplus team: Linda & Bengt Muthén, Thuy Nguyen, Tihomir 
Asparouhov, Michelle Conn, Jean Maninger
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Mplus Background

‒ V1: November 1998
‒ V3: March 2004
‒ V5: November 2007
‒ V6: April, 2010

‒ V2: February 2001
‒ V4: February 2006
‒ V5.21: May 2009
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Statistical Analysis With Latent Variables
A General Modeling Framework

Statistical Concepts Captured By Latent Variables

• Measurement errors
• Factors
• Random effects
• Frailties, liabilities
• Variance components
• Missing data

• Latent classes
• Clusters
• Finite mixtures
• Missing data

Continuous Latent Variables Categorical Latent Variables
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Statistical Analysis With Latent Variables
A General Modeling Framework (Continued)

• Factor analysis models
• Structural equation models
• Growth curve models
• Multilevel models

• Latent class models
• Mixture models
• Discrete-time survival models
• Missing data models

Models That Use Latent Variables

Mplus integrates the statistical concepts captured by 
latent variables into a general modeling framework that 
includes not only all of the models listed above but also 
combinations and extensions of these models.

Continuous Latent Variables Categorical Latent Variables
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• Observed variables
x background variables (no model structure)
y continuous and censored outcome variables
u categorical (dichotomous, ordinal, nominal) and 

count outcome variables
• Latent variables

f continuous variables
– interactions among f’s

c categorical variables
– multiple c’s

General Latent Variable Modeling Framework

8

General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework

• Observed variables
x background variables (no model structure)
y continuous and censored outcome variables
u categorical (dichotomous, ordinal, nominal) and 

count outcome variables
• Latent variables

f continuous variables
– interactions among f’s

c categorical variables
– multiple c’s
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Mplus

Several programs in one 
• Exploratory factor analysis
• Structural equation modeling
• Item response theory analysis
• Latent class analysis
• Latent transition analysis
• Survival analysis
• Growth modeling
• Multilevel analysis
• Complex survey data analysis
• Monte Carlo simulation

Fully integrated in the general latent variable framework
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Overview Of Mplus Courses 

• Topic 1. August 20, 2009, Johns Hopkins University: 
Introductory - advanced factor analysis and structural equation 
modeling with continuous outcomes

• Topic 2. August 21, 2009, Johns Hopkins University: 
Introductory - advanced regression analysis, IRT, factor 
analysis and structural equation modeling with categorical, 
censored, and count outcomes

• Topic 3. March 22, 2010, Johns Hopkins University: 
Introductory and intermediate growth modeling

• Topic 4. March 23, 2010, Johns Hopkins University:
Advanced growth modeling, survival analysis, and missing 
data analysis   
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Overview Of Mplus Courses (Continued)

• Topic 5. August 16, 2010, Johns Hopkins University: 
Categorical latent variable modeling with cross-sectional data

• Topic 6. August 17, 2010, Johns Hopkins University: 
Categorical latent variable modeling with longitudinal data
• Extra Topic. August 18, 2010, Johns Hopkins University: 

What’s new in Mplus version 6?

• Topic 7. March, 2011, Johns Hopkins University:
Multilevel modeling of cross-sectional data

• Topic 8. March, 2011, Johns Hopkins University: Multilevel 
modeling of longitudinal data  
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Advanced Growth Modeling

16

Modeling With Zeroes
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Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures

Modeling With A Preponderance Of Zeroes

• Outcomes: non-normal continuous – count – categorical
• Censored-normal modeling
• Two-part (semicontinuous modeling): Duan et al. (1983), 

Olsen & Schafer (2001)
• Mixture models, e.g. zero-inflated (mixture) Poisson (Roeder 

et al., 1999), censored-inflated, mover-stayer latent transition 
models, growth mixture models

• Onset (survival) followed by growth: Albert & Shih (2003)
18
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Two-Part (Semicontinuous) Growth Modeling

y1 y2 y3 y4

iu

iy sy

u1 u2 u3 u4

x

 su

y0 1 2 3 4

u0 1 2 3 4

0 1 2 3 4 original variable
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Inflated Growth Modeling
(Two Classes At Each Time Point)

x

i s

y1 y2 y3 y4

y1#1 y2#1 y3#1 y4#1

ii si
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Event History

Growth

Onset (Survival) Followed By Growth

u1

f

x

u2 u3 u4

iy sy

y1 y2 y3 y4
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Two-Part Growth Modeling
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NLSY Heavy Drinking Data

• The data are from the National Longitudinal Study of Youth 
(NLSY), a nationally representative household study of 12,686 
men and women born between 1957 and 1964.

• There are eight birth cohorts, but the current analysis considers 
only cohort 64 measured in 1982, 1983, 1984, 1988, 1989, and 
1994 at ages 18, 19, 20, 24, and 25.

• The outcome is heavy drinking, measured by the question: 
How often have you had 6 or more drinks on one occasion 
during the last 30 days?

• The responses are coded as: never (0); once (1); 2 or 3 times 
(2); 4 or 5 times (3); 6 or 7 times (4); 8 or 9 times (5); and 10 
or more times (6).

• Background variables include gender, ethnicity, early onset of 
regular drinking (es), family history of problem drinking, high 
school dropout and college education

23
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NLSY Heavy Drinking Data
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iu

iy sy

 

su

male
black
hisp
es
fh123
hsdrp

qy

qu

y18 y19 y20 y24 y25

u18 u19 u20 u24 u25

NLSY Heavy Drinking Data
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Input For NLSY Heavy Drinking

TITLE: nlsy36425x25dep.inp
cohort 64
centering at 25
hd82-hd89 (ages 18 - 25)
log age scale: x_t = a*(ln(t-b) - ln(c-b)), where t is 
time, a and b are constants to fit the mean curve 
(chosen as a = 2 and b = 16), and c is the centering 
age, here set at 25.

DATA: FILE = big.dat; 
FORMAT = 2f5, f2, t14, 5f7, t50, f8, t60, 6f1.0, t67, 
2f2.0, t71, 8f1.0, t79, f2.0, t82, 4f2.0;

DATA TWOPART: 

NAMES = hd82-hd89; 
BINARY = u18 u19 u20 u24 u25; 
CONTINUOUS = y18 y19 y20 y24 y25; 
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Input For NLSY Heavy Drinking (Continued)

VARIABLE: NAMES = id houseid cohort weight82 weight83 weight84 
weight88 weight89 weight94 hd82 hd83 hd84 hd88 hd89 
hd94 dep89 dep94 male black hisp es fh1 fh23 fh123 
hsdrp coll ed89 ed94 cd89 cd94;
USEOBSERVATIONS = cohort EQ 64 AND (coll GT 0 AND coll 
LT 20);
USEV = male black hisp es fh123 hsdrp coll u18-u25 
y18-y25; 
CATEGORICAL = u18-u25; 
MISSING = .; 
AUXILIARY = hd82-hd89; 

DEFINE: CUT coll (12.1); 

ANALYSIS: ESTIMATOR = ML; 
ALGORITHM = INTEGRATION; 
COVERAGE = 0.09; 
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MODEL: iu su qu | u18@-3.008 u19@-2.197 u20@-1.621 
u24@-.235 u25@.000;
iy sy qy | y18@-3.008 y19@-2.197 y20@-1.621 y24@-.235 
y25@.000;
iu-qy on male black hisp es fh123 hsdrp coll;

OUTPUT: TECH1 TECH4 TECH8 STANDARDIZED; 

PLOT: TYPE = PLOT3; 
SERIES = y18-y25(sy) | u18-u25(su);

Input For NLSY Heavy Drinking (Continued)



Regular Growth Modeling of 
NLSY Heavy Drinking

Parameter Estimate S.E. Est./S.E.

Regular growth modeling, treating outcome as continuous. 
Non-normality robust ML (MLR)

i ON 

male 0.769 0.076 10.066

black -0.336 0.083 -4.034

hisp -0.227 0.103 -2.208

es 0.291 0.128 2.283

fh123 0.286 0.137 2.089

hsdrop -0.024 0.104 -0.232

coll -0.131 0.086 -1.527
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Output Excerpts For Two-Part Growth 
Modeling of NLSY Heavy Drinking

Parameter Estimate S.E. Est./S.E.

Two-part growth modeling

iy ON 

male 0.329 0.058 5.651

black -0.123 0.062 -1.986

hisp -0.143 0.069 -2.082

es 0.096 0.062 1.543

fh123 0.219 0.076 2.894

hsdrop 0.093 0.063 1.466

coll -0.030 0.056 -0.526
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Output Excerpts For Two-Part Growth 
Modeling of NLSY Heavy Drinking 

(Continued)

Parameter Estimate S.E. Est./S.E.

iu ON 

male 1.533 0.164 9.356

black -0.705 0.172 -4.092

hisp -0.385 0.199 -1.934

es 0.471 0.194 2.430

fh123 0.287 0.224 1.281

hsdrop -0.191 0.183 -1.045

coll -0.325 0.161 -2.017
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As an example of differences in results between regular growth 
modeling and two-part growth modeling, consider the covariate es 
(early start, that is, early onset of regular drinking scored as 1 if the 
respondent had 2 or more drinks per week at age 14 or earlier):

Regular growth modeling says that es has a significant, positive
influence on heavy drinking at age 25, increasing the frequency of 
heavy drinking.

Two-part growth modeling says that es has a significant, positive 
influence on the probability of heavy drinking at age 25, but among 
those who engage in heavy drinking at age 25 there is no significant 
difference in heavy drinking frequency with respect to es.

32

NLSY Heavy Drinking Conclusions



Correlations

iu su qu iy sy qy

iu 1.000

su 0.572 1.000

qu 0.511 0.923 1.000

iy 0.945 0.524 0.454 1.000

sy -0.140 0.472 0.440 -0.041 1.000

qy -0.155 0.375 0.539 -0.101 0.847 1.000
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Output Excerpts For Two-Part Growth 
Modeling of NLSY Heavy Drinking 

(Continued)

34

Regression With A Count Dependent Variable
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Poisson Regression

A Poisson distribution for a count variable ui has 

P(ui = r) =  , where ui = 0, 1, 2, …λi
r e– λi

r!
λ is the rate at which a 
rare event occurs
(rate = mean count)

0.6

0.5

0.4
0.3

0.2

0.1

0 1 2 3 4
u

P(ui)

λ = 0.5

Regression equation for the log rate:
e log λi = ln λi = β0 + β1 xi
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Zero-Inflated Poisson (ZIP) Regression
A Poisson variable has mean = variance.

Data often have variance > mean due to preponderance of zeros.

π = P (being in the zero class where only u = 0 is seen)

1 – π = P (not being in the zero class with u following a Poisson
distribution)

A mixture at zero:

P(u = 0) = π + (1 – π) e–λ

The ZIP model implies two regressions:
logit (πi) = γ0 + γ1 xi ,

ln λi = β0 + β1 xi

Poisson part

ZIP mean count:

λ (1 - π)

ZIP variance of  count:

λ (1 - π) (1 + λ * π)
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Negative Binomial Regression
Unobserved heterogeneity εi is added to the Poisson model

Poisson assumes Negative binomial assumes

NB with α = 0 gives Poisson. When the dispersion parameter 
α > 0, the NB model gives substantially higher probability for 
low counts and somewhat higher probability for high counts than 
Poisson.

Further variations are zero-inflated NB and zero-truncated NB 
(hurdle model or two-part model).

ii10i xln εββλ ++=

( ) iii x|uE λ=
( ) iii x|uV λ= ( ) ( )αλλ 1x|uV iiii +=

( ) iii x|uE λ=

, where exp (ε) ~ Γ

NB-2
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Zero-Inflated Poisson (ZIP)
Growth Modeling Of Counts

2
tii2tii1i0ti aaln ηηηλ ++=

i11i1 ζαη +=

=tiu
0                    with probability πti

Poisson (λti)   with probability  1 - πti

i00i0 ζαη +=

i22i2 ζαη +=

In Mplus, , where u# is a binary latent inflation 
variable

( )1#uP titi ==π
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Philadelphia Crime Data ZIP Growth Modeling 

• 13,160 males ages 4 - 26 born in 1958 (Moffitt, 1993; Nagin & 
Land, 1993)

• Annual counts of police contacts

• Individuals with more than 10 counts in any given year deleted 
(n=13,126)

• Data combined into two-year intervals 
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Input Excerpts Philadelphia Crime Data

DATA: FILE = phillywide_zero_ln2006_del.dat;

VARIABLE: NAMES = cohortid erace sesdummy sescomp1 juvtot 
adttot

y10 y12 y14 y16 y18 y20 y22 y24
sex race;

MISSING = ALL (-9999);

USEVAR = y10 y12 y14 y16 y18 y20 y22 y24;

!y10 is ages 10-11, y12 is ages y12-13, etc
COUNT = y10-y24(i);
IDVAR = cohortid;

USEOBS = y10 LE 10 AND y12 LE 10 AND y14 LE 10 AND 
y16 LE 10 AND y18 LE 10 AND y20 LE 10 AND y22 LE 10 
AND y24 LE 10;
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Input Excerpts Philadelphia Crime Data 
(Continued)

ANALYSIS:

! algorithm = integration;

PROCESS = 4;

INTERACTIVE = control.dat;

MODEL: i s q | y10@0 y12@.1 y14@.2 y16@.3 y18@.4 y20@.5 
y22@.6 y24@.7; 

OUTPUT: TECH1 TECH10;

PLOT: TYPE = PLOT3;

SERIES = y10-y24(s);
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Output Excerpts Philadelphia Crime Data

TESTS OF MODEL FIT

Loglikelihood

H0 Value -40607.007

H0 Scaling Correlation Factor 0.931

for MLR

Information Criteria

Number of Free Parameters 17

Akaike (AIC) 81248.155

Bayesian (BIC) 81375.355

Sample-Size Adjusted BIC 81321.330

(n* = (n + 2) / 24)
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Output Excerpts Philadelphia Crime Data 
(Continued)

Estimate S.E. Est./S.E. Two-Tailed

P-Value

Means

I -4.689 0.145 -32.402 0.000

S 14.003 0.749 18.700 0.000

Q 20.036 0.913 21.942 0.000

Y10#1 0.768 0.123 6.268 0.000

Y12#1 -0.557 0.119 -4.679 0.000

Y14#1 -1.763 0.156 -11.322 0.000

Y16#1 -3.023 0.310 -9.746 0.000

Y18#1 -0.284 0.061 -4.638 0.000

Y20#1 -0.319 0.074 -4.293 0.000

Y22#1 -1.521 0.166 -9.156 0.000

Y24#1 -13.723 9.974 -1.376 0.169
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Output Excerpts Philadelphia Crime Data 
(Continued)

Estimate S.E. Est./S.E. Two-Tailed

P-Value

Intercepts

Y10 0.000 0.000 999.000 999.000

Y12 0.000 0.000 999.000 999.000

Y14 0.000 0.000 999.000 999.000

Y16 0.000 0.000 999.000 999.000

Y18 0.000 0.000 999.000 999.000

Y20 0.000 0.000 999.000 999.000

Y22 0.000 0.000 999.000 999.000

Y24 0.000 0.000 999.000 999.000

Variances

I 5.509 0.345 15.960 0.000

S 32.931 4.568 7.206 0.000

Q 59.745 7.603 7.858 0.000
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Output Excerpts Philadelphia Crime Data 
(Continued)

Estimate S.E. Est./S.E. Two-Tailed

P-Value

S      WITH

I -8.320 1.206 -6.896 0.000

Q      WITH

I 5.864 1.358 4.318 0.000

S -35.766 5.594 -6.394 0.000
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Estimated Mean Counts 
For Philadelphia Crime Data
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Philadelphia Crime Data Model Fit To 
Counts For Most Frequent Response Patterns

Pattern Observed Estimated Z Score

00000000 8021 7850 3.04

00010000 572 673 -4.00

00100000 378 433 -2.72

00001000 292 354 -3.32

00000010 203 233 -1.95

00000100 201 266 -4.03

20000000 181 173 0.60

00000001 141 157 -1.27

00110000 117 112 0.50

00020000 107 95 1.28
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Growth Modeling With Multiple Populations
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Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures

50

• Group as a dummy variable

• Multiple-group analysis

• Multiple-group analysis of randomized interventions

Multiple Population Growth Modeling
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Group Dummy Variable As A Covariate

TX

y2 y3 y4

η0 η1

y5y1
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Two-Group Model

y2 y3 y4

η0 η1

y5y1

y2 y3 y4

η0 η1

y5y1
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Let ygit denote the outcome for population (group) g, individual i, and 
timepoint t,

Level 1: ygti =  ηg0i + ηg1i xt + εgti , (65)
Level 2a: ηg0i =  αg0 + γg0 wgi + ζg0i , (66)
Level 2b: ηg1i =  αg1 + γg1 wgi + ζg1i , (67)

Measurement invariance (level-1 equation): time-invariant intercept 0 and 
slopes 1, xt
Structural differences (level-2): αg , γg , V(ζg)
Alternative parameterization:

Level 1: ygti =  v + ηg0i + ηg1i xt + εgti , (68)
with α10 fixed at zero in level 2a.

Analysis steps:
1. Separate growth analysis for each group
2. Joint analysis of all groups, free structural parameters
3. Join analysis of all groups, tests of structural parameter invariance

Multiple Population 
Growth Modeling Specifications
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NLSY: Multiple Cohort Structure

Birth
Year Cohort

Agea

57

58

59

60

61

62

63

64

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

82 83

82

82

82

82

82

82

82

83

83

83

83

83

83

83

84

84

84

84

84

84

84

84

85

85

85

85

85

85

85

85

86

86

86

86

86

86

86

86

87

87

87

87

87

87

87

87

88

88

88

88

88

88

88

88

89 90 91 92 93 94

89

89

89

89

89

89

89

90

90

90

90

90

90

90

91

91

91

91

91

91

91

92

9292

92

92

92

92

92

93

93

93

93

93

93

93

94

94

94

94

94

94

94

a Non-shaded areas represent years in which alcohol measures were obtained



Three Approaches To Cohort Structures

• Single group - using y18 - y37

• Single group - using 7 y's and AT with TSCORES to capture 
varying ages

• Multiple group - using 7 y's and 8 cohorts with  s@xt
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Multiple Group Modeling Of Multiple Cohorts

• Data – two cohorts born in 1961 and 1962 measured on the 
frequency of heavy drinking in the years 1983, 1984, 1988, 
and 1989

• Development of heavy drinking across chronological age, 
not year of measurement, is of interest

Cohort/Year 1983 1984 1988 1989
1961 (older) 22 23 27 28
1962 (younger) 21 22 26 27

Cohort/Age 21    22    23    24    25    26    27    28
1961 (older)                  83    84 88    89
1962 (younger)      83 84 88    89
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• Time scores calculated for age, not year of measurement
Age          21 22    23 24    25    26    27    28
Time score 0       1      2 3      4      5      6 7

Multiple Group Modeling Of
Multiple Cohorts (Continued)

Cohort 1961 time scores   1  2  6  7
Cohort 1962 time scores    0  1  5  6

• Can test the degree of measurement and structural 
invariance
• Test of full invariance

• Growth factor means, variances, and covariances 
held equal across cohorts

• Residual variances of shared ages held equal across 
cohorts

58

TITLE: Multiple Group Modeling Of Multiple Cohorts

DATA: FILE IS cohort.dat; 

VARIABLE: NAMES ARE cohort hd83 hd84 hd88 hd89;
MISSING ARE *;
USEV = hd83 hd84 hd88 hd89;
GROUPING IS cohort (61 = older 62 = younger);

MODEL: i s | hd83@0 hd84@1 hd88@5 hd89@6;
[i] (1);
[s] (2);
i (3);
s (4);
i WITH s (5);

Input For Multiple Group Modeling
Of Multiple Cohorts
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MODEL younger:

Input For Multiple Group Modeling
Of Multiple Cohorts (Continued)

MODEL older:

i s | hd83@1 hd84@2 hd88@6 hd89@7;
hd83 (6);
hd88 (7);

hd84 (6);
hd89 (7);

OUTPUT: STANDARDIZED;
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Tests Of Model Fit

Chi-Square Test of Model Fit
Value 68.096
Degrees of Freedom 17
P-Value .0000

Chi-Square Contributions From Each Group
OLDER 39.216
YOUNGER 28.880

Chi-Square Test of Model Fit for the Baseline Model
Value                           3037.930
Degrees of Freedom                    12
P-Value                           0.0000

CFI/TLI
CFI                                0.983
TLI                                0.988

Output Excerpts Multiple Group Modeling
Of Multiple Cohorts
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Loglikelihood
H0 Value                      -18544.420
H1 Value                      -18510.371

Information Criteria
Number of Free Parameters             11
Akaike (AIC)                   37110.839
Bayesian (BIC)                 37175.770
Sample-Size Adjusted BIC       37140.820

(n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)
Estimate                           0.047
90 Percent C.I.                    0.036  0.059

SRMR (Standardized Root Mean Square Residual)
Value                              0.033

Output Excerpts Multiple Group Modeling
Of Multiple Cohorts (Continued)
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Output Excerpts Multiple Group Modeling
Of Multiple Cohorts (Continued)

Residual Variances
HD83 1.141 .046 24.996 1.141 .445
HD84 1.062 .057 18.489 1.062 .453
HD88 1.028 .041 25.326 1.028 .455
HD89 .753 .053 14.107 .753 .358

Variances
I 1.618 .068 23.651 1.000 1.000
S .026 .002 13.372 1.000 1.000

Means
I 1.054 .030 35.393 .828 .828
S -.032 .005 -6.611 -.200 -.200

Group OLDER

I        WITH
S -.111 .010 -11.390 -.537 -.537

Estimates     S.E.  Est./S.E.  Std     StdYX
Model Results
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GROUP YOUNGER
Residual Variances

HD83 1.049 .066 15.916 1.049 .393
HD84 1.141 .046 24.996 1.141 .445
HD88 1.126 .056 19.924 1.126 .491
HD89 1.028 .041 25.326 1.028 .455

Output Excerpts Multiple Group Modeling
Of Multiple Cohorts (Continued)
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Preventive Interventions
Randomized Trials

Prevention Science Methodology Group (PSMG)

Developmental Epidemiological Framework:

• Determining the levels and variation in risk and protective 
factors as well as developmental paths within a defined 
population in the absence of intervention

• Directing interventions at these risk and protective factors 
in an effort to change the developmental trajectories in a 
defined population

• Evaluating variation in intervention impact across risk 
levels and contexts on proximal and distal outcomes, 
thereby empirically testing the developmental model
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Aggressive Classroom Behavior:
The GBG Intervention

Muthén & Curran (1997, Psychological Methods)

The Johns Hopkins Prevention Center carried out a school-
based preventive intervention randomized trial in Baltimore
public schools starting in grade 1. One of the interventions
tested was the Good Behavior Game intervention, a classroom 
based behavior management strategy promoting good
behavior. It was designed specifically to reduce aggressive
behavior of first graders and was aimed at longer term impact
on aggression through middle school.

One first grade classroom in a school was randomly assigned
to receive the Good Behavior Game intervention and another
matched classroom in the school was treated as control. After
an initial assessment in fall of first grade, the intervention was
administered during the first two grades.

66

The outcome variable of interest was teacher ratings (TOCA-R) of
each child’s aggressive behavior (breaks rules, harms property,
fights, etc.) in the classroom through grades 1 – 6. Eight teacher
ratings were made from fall and spring for the first two grades and
every spring in grades 3 – 6. 

The most important scientific question was whether the Good
Behavior Game reduces the slope of the aggression trajectory
across time. It was also of interest to know whether the intervention
varies in impact for children who started out as high aggressive
versus low aggressive.

Analyses in Muthén-Curran (1997) were based on data for 75 boys
in the GBG group who stayed in the intervention condition for two
years and 111 boys in the control group.

Aggressive Classroom Behavior:
The GBG Intervention (Continued)
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The GBG Aggression Example:
Analysis Results

Muthén & Curran (1997):

• Step 1: Control group analysis

• Step 2: Treatment group analysis

• Step 3: Two-group analysis w/out interactions

• Step 4: Two-group analysis with interactions

• Step 5: Sensitivity analysis of final model

• Step 6: Power analysis
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MUTHÉN AND CURRAN

TO
C

A
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Figure 15. Model implied growth trajectories of Teacher Observation of Classroom Behavior—Revised (TOCA-R) scores
as a function of initial status. Each timepoint represents one 6-month interval.
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y2 y3 y4 y5y1 y6 y7 y8

i s q

y2 y3 y4 y5y1 y6 y7 y8

i s q

t

Control Group

Treatment Group
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Input Excerpts For Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A

Regression Among Random Effects

TITLE: Aggressive behavior intervention growth model
n = 111 for control group
n = 75 for tx group

MODEL: i s q | y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11;

i t | y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11;

[y1-y8] (1);   !alternative growth model

[i@0];         !parameterization

i (2);

s (3);

i WITH s (4);

[s] (5);

[q] (6);

t@0 q@0;

q WITH i@0 s@0 t@0; y1-y7 PWITH y2-y8;

t ON i;
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Input Excerpts For Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A
Regression Among Random Effects (Continued)

MODEL control:
t ON i@0;
[t@0];

72

Tests Of Model Fit

Chi-Square Test of Model Fit

Value 64.553
Degrees of Freedom 50
P-Value .0809

RMSEA (Root Mean Square Error Of Approximation)

Estimate .056
90 Percent C.I. .000 .092

Output Excerpts Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A 

Regression Among Random Effects
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Variable R-Square

Y1 .644
Y2 .642
Y3 .663
Y4 .615
Y5 .637
Y6 .703
Y7 .812
Y8 .818

Group Control

Observed

Output Excerpts Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A 
Regression Among Random Effects (Continued)

Group Tx

Observed
Variable R-Square

Y1 .600
Y2 .623
Y3 .568
Y4 .464
Y5 .425
Y6 .399
Y7 .703
Y8 .527
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T      ON
I .000 .000 .000 999.000 999.000

Residual Variances
Y1 .444 .088 5.056 .444 .356
Y2 .449 .079 5.714 .449 .358
Y3 .414 .069 6.026 .414 .337
Y4 .522 .080 6.551 .522 .385
Y5 .512 .079 6.469 .512 .363
Y6 .422 .074 5.677 .422 .297
Y7 .264 .083 3.186 .264 .188
Y8 .291 .094 3.097 .291 .182
T .000 .000 .000 999.000 999.000

Variances
I .803 .109 7.330 1.000 1.000
S .004 .001 3.869 1.000 1.000
Q .000 .000 .000 999.000 999.000

Estimates     S.E.  Est./S.E.   Std      StdYX

Output Excerpts Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A 
Regression Among Random Effects (Continued)

Group Control
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Means
I .000 .000 .000 .000 .000
S .086 .021 4.035 1.285 1.285
Q -.005 .002 -3.005 999.000 999.000

Intercepts
Y1 2.041 .078 26.020 2.041 1.828
Y2 2.041 .078 26.020 2.041 1.823
Y3 2.041 .078 26.020 2.041 1.841
Y4 2.041 .078 26.020 2.041 1.753
Y5 2.041 .078 26.020 2.041 1.718
Y6 2.041 .078 26.020 2.041 1.711
Y7 2.041 .078 26.020 2.041 1.724
Y8 2.041 .078 26.020 2.041 1.612
T .000 .000 .000 999.000 999.000

Output Excerpts Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A 
Regression Among Random Effects (Continued)

Estimates     S.E.  Est./S.E.   Std      StdYX
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T      ON
I -.052 .015 -3.347 -1.000 -1.000

Residual Variances
Y1 .535 .141 3.801 .535 .400
Y2 .439 .122 3.595 .439 .377
Y3 .501 .108 4.653 .501 .432
Y4 .701 .132 5.332 .701 .536
Y5 .736 .133 5.545 .736 .575
Y6 .805 .152 5.288 .805 .601
Y7 .245 .104 2.364 .245 .297
Y8 .609 .182 3.351 .609 .473
T .000 .000 .000 .000 .000

Variances
I .803 .109 7.330 1.000 1.000
S .004 .001 3.869 1.000 1.000
Q .000 .000 .000 999.000 999.000

Output Excerpts Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A 
Regression Among Random Effects (Continued)

Group Tx
Estimates     S.E.  Est./S.E.   Std      StdYX
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Means
I .000 .000 .000 .000 .000
S .086 .021 4.035 1.285 1.285
Q -.005 .002 -3.005 999.000 999.000

Intercepts
Y1 2.041 .078 26.020 2.041 1.764
Y2 2.041 .078 26.020 2.041 1.893
Y3 2.041 .078 26.020 2.041 1.895
Y4 2.041 .078 26.020 2.041 1.785
Y5 2.041 .078 26.020 2.041 1.805
Y6 2.041 .078 26.020 2.041 1.764
Y7 2.041 .078 26.020 2.041 2.248
Y8 2.041 .078 26.020 2.041 1.799
T -.016 .013 -1.225 -.341 -.341

Output Excerpts Aggressive Behavior Intervention
Using A Multiple Group Growth Model With A 
Regression Among Random Effects (Continued)

Estimates     S.E.  Est./S.E.   Std      StdYX
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Growth Modeling With Multiple Indicators
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Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures
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Growth Of Latent Variable Construct
Measured By Multiple Indicators

ν1 ν2 ν3 ν1+α2 ν2+λ2α2 ν3+λ3α2 ν1+2α2 ν2+2λ2α2 ν3+2λ3α2

ν1 ν2 ν3

λ1=1 λ2 λ3

0

1

0 α2

1 1
1 2

0 0

Observed
means:

ν1 ν2 ν3 ν1 ν2 ν3

λ1=1 λ2 λ3 λ1=1 λ2 λ3

η0 η1
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Multiple Indicator Growth
Modeling Specifications

Let yjti denote the outcome for individual i, indicator j, and
timepoint t, and let ηti denote a latent variable construct,

Level 1a (measurement part):
yjti =  vjt + λjt ηti + εjti , (44)

Level 1b : ηti = η0i + η1i xt + ζti , (45)
Level 2a : η0i  = α0 + γ0 wi + ζ0i , (46) 
Level 2b : η1i  = α1 + γ1 wi + ζ1i , (47)

Measurement invariance: time-invariant indicator intercepts
and slopes: 

vj1 =  vj2 =  … vjT = vj , (48)
λj1 = λj2 =  … λjT = λj , (49)

where λ1 = 1, α0 = 0. V (εjti ) and V (ζti ) may vary over time.
Structural differences: E (ηti ) and V (ηti ) vary over time.
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• Exploratory factor analysis of indicators for each timepoint
• Determine the shape of the growth curve for each indicator 

and the sum of the indicators
• Fit a growth model for each indicator—must be the same
• Confirmatory factor analysis of all timepoints together

• Covariance structure analysis without measurement 
parameter invariance

• Covariance structure analysis with invariant loadings
• Mean and covariance structure analysis with invariant 

measurement intercepts and loadings
• Growth model with measurement invariance across 

timepoints

Steps In Growth Modeling 
With Multiple Indicators
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• Estimation of unequal weights

• No need to assume full measurement invariance:
• Partial measurement invariance—changes across time 

in individual item functioning

• No confounding of time-specific variance and 
measurement error variance

• Smaller standard errors for growth factor parameters (more 
power)

Advantages Of Using Multiple Indicators
Instead Of An Average
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The classroom aggression data are from an intervention study
in Baltimore public schools carried out by the Johns Hopkins
Prevention Research Center. Subjects were randomized into
treatment and control conditions. The TOCA-R instrument
was used to measure 10 aggression items at multiple
timpoints. The TOCA-R is a teacher rating of student
behavior in the classroom. The items are rated on a six-point
scale from almost never to almost always.

Data for this analysis include the 342 boys in the control
group. Four time points are examined: Spring Grade 1, Spring
Grade 2, Spring Grade 3, and Spring Grade 4.

Seven aggression items are used in the analysis:
- Break rules - Lies - Yells at others
- Fights - Stubborn
- Harms others - Teasing classmates

Classroom Aggression Data (TOCA)



bru12 fig12 hot12 lie12 stu12 tcl12 yot12 bru42 fig42 hot42 lie42 stu42 tcl42 yot42...

f12a f42a

i s

...
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Input Excerpts For TOCA Data Multiple Indicator 
CFA With No Measurement Invariance

TITLE: Multiple indicator CFA with no measurement invariance
.
.
.
MODEL: f12a BY bru12-yot12;

f22a BY bru22-yot22;
f32a BY bru32-yot32;
f42a BY bru42-yot42;
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Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading Invariance

TITLE: Multiple indicator CFA with factor loading invariance
.
.
.
MODEL: f12a BY bru12

fig12-yot12 (1-6);
f22a BY bru22

fig22-yot22 (1-6);
f32a BY bru32

fig32-yot32 (1-6);
f42a BY bru42

fig42-yot42 (1-6);
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Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading And Intercept Invariance 

TITLE: Multiple indicator CFA with factor loading and intercept 
incariance

.

.

.
MODEL: f12a BY bru12

fig12-yot12 (1-6);
f22a BY bru22

fig22-yot22 (1-6);
f32a BY bru32

fig32-yot32 (1-6);

f42a BY bru42

fig42-yot42 (1-6);
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[bru12 bru22 bru32 bru42] (7);
[fig12 fig22 fig32 fig42] (8);
[hot12 hot22 hot32 hot42] (9);
[lie12 lie22 lie32 lie42] (10);
[stu12 stu22 stu32 stu42] (11);
[tcl12 tcl22 tcl32 tcl42] (12);
[yot12 yot22 yot32 yot42] (13);

[f12a@0 f22a f32a f42a];

Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading And Intercept Invariance

(Continued) 

90

Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading Invariance And

Partial Intercept Invariance

TITLE: Multiple indicator CFA with factor loading and partial 
intercept invariance

MODEL: f12a BY bru12
fig12-yot12 (1-6);

f22a BY bru22
fig22-yot22 (1-6);

f32a BY bru32

fig32-yot32 (1-6);

f42a BY bru42

fig42-yot42 (1-6);
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Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading Invariance And
Partial Intercept Invariance (Continued)

[bru12 bru22 bru32 bru42] (7);
[fig12 fig22 fig32 fig42] (8);
[hot12 hot22 hot32      ] (9);
[lie12 lie22 lie32 lie42] (10);
[stu12 stu22            ] (11);
[tcl12 tcl22 tcl32      ] (12);
[yot12 yot22 yot32 yot42] (13);

[f12a@0 f22a f32a f42a];
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Summary of Analysis Results For TOCA
Measurement Invariance Models

Model Chi-Square 
(d.f.)

Difference
(d.f. diff.) 

Measurement non-invariance 567.08 (344)
Factor loading invariance 581.29 (362) 14.21 (18)
Factor loading and

intercept invariance 654.59 (380) 73.30* (18)
Factor loading and partial

intercept invariance 606.97 (376) 25.68* (14)
Factor loading and partial intercept

invariance with a linear growth  
structure 614.74 (381) 7.77 (5)
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Factor loading invariance   (18)   6 factor loadings instead of 24
Factor loading and 7 intercepts plus 3 factor means

intercept invariance         (18) instead of 28 intercepts
Factor loading and partial 4 additional intercepts

intercept invariance         (14)
Factor loading and partial 1 growth factor mean instead 

intercept invariance with of 3 factor means
a linear growth structure  (5) 2 growth factor variances, 1

growth factor covariance, 4 factor 
residual variances instead of 10 
factor variances/covariances

Summary of Analysis Results For TOCA
Measurement Invariance Models (Continued)

Explanation of Chi-Square Differences

94

Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading And Intercept Invariance 

With A Linear Growth Structure

MODEL: f12a BY bru12
fig12-yot12 (1-6);

f22a BY bru22
fig22-yot22 (1-6);

f32a BY bru32
fig32-yot32 (1-6);

f42a BY bru42
fig42-yot42 (1-6);
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[bru12 bru22 bru32 bru42] (7);
[fig12 fig22 fig32 fig42] (8);
[hot12 hot22 hot32      ] (9);
[lie12 lie22 lie32 lie42] (10);
[stu12 stu22            ] (11);
[tcl12 tcl22 tcl32      ] (12);
[yot12 yot22 yot32 yot42] (13);

i s | f12a@0 f22a@1 f32a@2 f42a@3;

Alternative language:

i BY f12a-f42a@1;
s BY f12a@0 f22a@1 f32a@2 f42a@3;
[f12a-f42a@0 i@0 s];

Input Excerpts For TOCA Data Multiple Indicator 
CFA With Factor Loading And Intercept Invariance 

With A Linear Growth Structure (Continued)
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F12A BY
BRU12 1.000 .000 .000 .190 .786
FIG12 1.097 .039 28.425 .208 .868
HOT12 .986 .037 26.586 .187 .811
LIE12 .967 .041 23.769 .184 .742
STU12 .880 .041 21.393 .167 .667
TCL12 1.034 .039 26.206 .196 .786
YOT12 .932 .039 23.647 .177 .709

Intercepts
STU12 .331 .013 25.408 .331 1.324
STU22 .331 .013 25.408 .331 1.231
STU32 .417 .017 24.345 .417 1.592
STU42 .390 .017 23.265 .390 1.496

Estimates    S.E. Est./S.E.     Std    StdYX

Output Excerpts For TOCA Data Multiple Indicator
CFA With Factor Loading And Intercept Invariance

With A Linear Growth Structure
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Stu

f

later grades
earlier grades
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Degrees Of Invariance Across Time
• Case 1

• Same items
• All items invariant
• Same construct

• Case 2
• Same items
• Some items non-invariant
• Same construct

• Case 3
• Different items
• Some items invariant
• Same construct

• Case 4
• Different items
• Some items invariant
• Different construct
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a1 a2 b2 b4

i s

a3 b3

a1 b1 c1 a2 b2 d2 a3 e3 d3 f4 e4 d4

1 λ λ 1 λ λ 1 λ λ λ λλ

i s

νbνa νc νbνa νd νeνa νd νeνf νd

b b edc ed f d
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Embedded Growth Models
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Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures

Growth Modeling With 
Time-Varying Covariates
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A Generalized Growth Model
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A Generalized Growth Model

i

s

stvc

mothed

homeres

female

mthcrs7 mthcrs8 mthcrs9 mthcrs10

math7 math8 math9 math10

f

gr
ad

e 
7 

pa
re

nt
 &

 p
ee

r
ac

ad
em

ic
 p

us
h

106

A Generalized Growth Model
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Two Linked Processes

advp advm1 advm2 advm3 momalc2 momalc3

0 0 0 0 0 0

i s

gender ethnicity

hcirc0 hcirc8 hcirc18 hcirc36

hi hs1 hs2

i + s * t
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Input Excerpts For Two Linked Processes
With Measurement Error 

In The Covariates

TITLE: Embedded growth model with measurement error in the 
covariates and sequential processes 
advp: mother’s drinking before pregnancy
advm1-advm3: drinking in first trimester
momalc2-momalc3: drinking in 2nd and 3rd trimesters
hcirc0-hcirc36; head circumference

MODEL: fadvp    BY  advp;        fadvp@0;
fadvm1   BY  advm1;      fadvm1@0;
fadvm2   BY  advm2;      fadvm2@0;
fadvm3   BY  advm3;      fadvm3@0;
fmomalc2 BY  momalc2;  fmomalc2@0;
fmomalc3 BY  momalc3;  fmomalc3@0;
i BY fadvp-fmomalc3@1;
s BY fadvp@0  fadvm1@1  fadvm2*2  fadvm3*3

fmomalc2-fmomalc3*5 (1); 
[advp-momalc3@0 fadvp-fmomalc3@0 i s];  
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Input Excerpts For Two Linked Processes
With Measurement Error 

In The Covariates (Continued)

advp WITH advm1; advm1 WITH advm2; advm3 WITH advm2;

i s ON gender eth; s WITH i;

hi   BY  hcirc0-hcirc36@1;
hs1  BY  hcirc0@0 hcirc8@1.196 hcirc36@1.196 hcirc36@1.196; 
hs2  BY  hcirc0@0 hcirc8@0 hcirc18@1 hcirc36*2;

[hcirc0-hcirc36@0 hi*34 hs1 hs2];

hs1 WITH hs2@0; hi WITH hs2@0; hi WITH hs1@0;
hi  WITH i@0; hi   WITH s@0; hs1  WITH i@0;
hi1 WITH s@0; hs2  WITH i@0; hs2  WITH s@0;

hi-hs2 ON gender eth fadvm2;
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Power For Growth Models
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Designing Future Studies: Power

• Computing power for growth models using Satorra-Saris 
(Muthén & Curran, 1997; examples)

• Computing power using Monte Carlo studies (Muthén & 
Muthén, 2002)

• Power calculation web site – PSMG
• Multilevel power (Miyazaki & Raudenbush, 2000; 

Moerbeek, Breukelen & Berger, 2000; Raudenbush, 1997; 
Raudenbush & Liu, 2000)

• School-based studies (Brown & Liao, 1999: Principles for 
designing randomized preventive trials)

• Multiple- (sequential-) cohort power
• Designs for follow-up (Brown, Indurkhia, & Kellam, 

2000)
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Designing Future Studies: Power

χ2

H0 correct

5%

Type I error

H0 incorrect

P (Rejecting | H0 incorrect) = Power

Type II error
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Power Estimation For Growth Models 
Using Satorra & Saris (1985)

• Step 1: Create mean vector and covariance matrix for 
hypothesized parameter values

• Step 2: Analyze as if sample statistics and check that 
parameter values are recovered

• Step 3: Analyze as if sample statistics, misspecifying the 
model by fixing treatment effect(s) at zero

• Step 4: Use printed x2 as an appropriate noncentrality 
parameter and computer power.

Muthén & Curran (1997): Artificial and real data situations.
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Input For Step 1 
Of Power Calculation

TITLE: Power calculation for a growth model
Step 1: Computing the population means and 
covariance matrix

DATA: FILE IS artific.dat; 
TYPE IS MEANS COVARIANCE;
NOBSERVATIONS = 500;

VARIABLE: NAMES ARE y1-y4;

MODEL: i s | y1@0 y2@1 y3@2 y4@3;
i@.5;
s@.1;
i WITH s@0;
y1-y4@.5;

OUTPUT: STANDARDIZED RESIUDAL;
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0   0   0   0 
1
0   1
0   0   1
0   0   0   1

Data For Step 1 
Of Power Calculation (Continued)
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Input For Step 2
Of Power Calculation

TITLE: Power calculation for a growth model
Step 2: Analyzing the population means and 
covariance matrix to check that parameters are 
recovered

DATA: FILE IS pop.dat; 
TYPE IS MEANS COVARIANCE;
NOBSERVATIONS = 500;

VARIABLE: NAMES ARE y1-y4;

MODEL: i s | y1@0 y2@1 y3@2 y4@3;

OUTPUT: STANDARDIZED RESIUDAL;
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Data From Step 1 Residual Output

0   .2   .4   .6 
1
.5   1.1
.5   .7   1.4
.5   .8   1.1   1.9

Data For Step 2
Of Power Calculation (Continued)
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Input For Step 3
Of Power Calculation

TITLE: Power calculation for a growth model
Step 3: Analyzing the population means and 
covariance matrix with a misspecified model

DATA: FILE IS pop.dat; 
TYPE IS MEANS COVARIANCE;
NOBSERVATIONS = 50;

VARIABLE: NAMES ARE y1-y4;

MODEL: i s | y1@0 y2@1 y3@2 y4@3;

OUTPUT: STANDARDIZED RESIUDAL;
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Output Excerpt From Step 3

Chi-Square Test of Model Fit

Value 9.286
Degrees of Freedom 6
P-Value .1580

Power Algorithm in SAS

DATA POWER;
DF=1; CRIT=3.841459;
LAMBDA=9.286;
Power=(1 – (PROBCHI(CRIT, DF, LAMBDA)));
RUN;

Step 4 Of Power Calculation
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Results From Power Algorithm

SAMPLE SIZE POWER
44 0.80
50 0.85
100 0.98
200 0.99

Note: Non-centrality parameter =
printed chi-square value from Step 3 =

2*sample size*F

Step 4 Of Power Calculation (Continued)
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Figure 6. Power to detect a main effect of ES = .20 assessed at Time 5.
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Figure 7. Power to detect a main effect of ES = .20 assessed at Time 5 varying
as a function of total number of measurement occasions.
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Figure 8. Power to detect various effect sizes assessed at Time 5 based
on the first five measurement occasions
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Power Estimation For Growth Models
Using Monte Carlo Studies

Muthén, L.K. and Muthén, B.O. (2002). How to use a Monte 
Carlo study to decide on sample size and determine power. 
Structural Equation Modeling, 4, 599-620.



125

TITLE: This is an example of a Monte Carlo 
simulation study for a linear growth model 
for a continuous outcome with missing data 
where attrition is predicted by time-
invariant covariates (MAR)

MONTECARLO: NAMES ARE y1-y4 x1 x2;
NOBSERVATIONS = 500;
NREPS = 500;
SEED = 4533;
CUTPOINTS = x2(1); 
MISSING = y1-y4;

Input Power Estimation For Growth Models
Using Monte Carlo Studies
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MODEL POPULATION: x1-x2@1;
[x1-x2@0];
i s | y1@0 y2@1 y3@2 y4@3;
[i*1 s*2];
i*1; s*.2; i WITH s*.1;
y1-y4*.5;
i ON x1*1 x2*.5;
s ON x1*.4 x2*.25;

MODEL MISSING: [y1-y4@-1];
y1 ON x1*.4 x2*.2;
y2 ON x1*.8 x2*.4;
y3 ON x1*1.6 x2*.8;
y4 ON x1*3.2 x2*1.6;

Input Power Estimation For Growth Models
Using Monte Carlo Studies (Continued)



127

MODEL: i s | y1@0 y2@1 y3@2 y4@3;

[i*1 s*2];
i*1; s*.2; i WITH s*.1;
y1-y4*.5;
i ON x1*1 x2*.5;
s ON x1*.4 x2*.25;

OUTPUT: TECH9;

Input Power Estimation For Growth Models
Using Monte Carlo Studies (Continued)
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Output Excerpts Power Estimation For
Growth Models Using Monte Carlo Studies

Model Results

I     ON
X1 1.000 1.0032 0.0598 0.0579 0.0036 0.936 1.000
X2 0.500 0.5076 0.1554 0.1570 0.0241 0.952 0.908

S     ON
X1 0.400 0.3980 0.0366 0.0349 0.0013 0.936 1.000
X2 0.250 0.2469 0.0865 0.0877 0.0075 0.938 0.830

ESTIMATES S.E. M. S. E.  95%  %Sig

Population Average Std. Dev. Average Cover Coeff
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Cohort-Sequential Designs and Power

Considerations:
• Model identification
• Number of timepoints needed substantively
• Number of years of the study
• Number of cohorts: More gives longer timespan but 

greater risk of cohort differences
• Number of measurements per individual
• Number of individuals per cohort
• Number of individuals per age
Tentative conclusion:
Power most influenced by total timespan, not the number of 

measures per cohort
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Survival Analysis
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Survival Analysis

• Discrete-time
– Infrequent measurement (monthly, annually)
– Limited number of time periods

• Continuous-time
– Frequent measurement (hourly, daily)
– Large number of time points

132

Discrete-Time Survival Analysis
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Discrete-Time Survival Analysis
Other terms: event history analysis, time-to-event.
References: Allison (1984), Singer & Willet (1993), Vermunt (1997).
• Setting

– Discrete time periods (e.g. grade), non-repeatable event (e.g. 
onset of drug use)

– Uncensored and censored individuals
– Time-invariant and time-varying covariates

• Aim
– Estimate survival curves and hazard probabilities
– Relate survival to covariates

• Generalized models using multiple latent classes of survival
– Long-term survivors with zero hazard
– Growth mixture modeling in combination with survival analysis

• Application: School removal and aggressive behavior in the 
classroom (Muthén & Masyn, 2005). Grade 1 sample, n = 403 
control group children.
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Data For Discrete-Time Survival Analysis

• Single non-repeatable event – data collection ends for individual i
when the event has been observed, where ji is the last time period of 
data collection for individual i

• uj ( j = 1, 2,…, ji ) are binary 0/1 event history indicators, where uij = 
1 if individual i experiences an event in time period j

Event history information entered into an r x 1 data vector ui where r
denotes the maximum value of ji over all individuals and where u = 999
denotes missing data.
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Examples:

• An individual who is censored after time period five ( ji = 6)
( 0  0  0  0  0 ),

• An individual who experiences the event in period four ( ji = 4)
( 0  0  0  1  999 ),

• An individual who drops out after period three, i.e. is censored
during period four before the study ends ( ji = 4)

( 0  0  0  999  999 ).

Data For Discrete-Time Survival Analysis
(Continued)
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Model For Discrete-Time Survival Analysis

x

u1 u2 u3 u4 u5
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Hazard, Survival, Likelihood

The hazard is the probability of experiencing the event in the time
period j given that it was not experienced prior to j. Letting the time of
the event for individual i be denoted Ti, the logistic hazard function with
q covariates x is

P (uij = 1) = P (Ti = j | Ti ≥ j ) = hij = , (49)

where a proportional-odds assumption is obtained by dropping the j
subscript for κj . The survival function is

Sij = (1 – hik). (50) 

1
1 + e – (–τj + κj xi )

Π
j

k=1
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Hazard, Survival, Likelihood (Continued)

The likelihood L =         li , where 

li =      hij (1 – hij)        . (51) 

A censored individual is observed with probability

li =      (1 – hij). (52)

An uncensored individual experiences the event in time period ji with
probability

= hij            (1 – hij). (53)

Π
ji

j=1

Πn
i=1

uij 1–uij

Π
ji

j=1

i Π
ji – 1

j=1
li
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Gender Grade No School 
removal

At least one 
school removal

Sample 
Hazard

Male 1 0 4 4/200 = 0.02
2 0 5 5/196 = 0.03
3 0 7 7/191 = 0.04
4 0 6 6/184 = 0.03
5 0 14 14/178 = 0.08
6 0 14 14/164 = 0.08
7 122 28 28/150 = 0.19

Total 122 78 200

School Removal Data (n = 403)

Female 1 0 0 0/203 = 0.00
2 0 1 1/203 = 0.005
3 0 1 1/202 = 0.005
4 0 3 3/201 = 0.01
5 0 1 1/198 = 0.005
6 0 9 9/197 = 0.05
7 157 31 31/188 = 0.16

Total 157 46 203
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Hazard Sample Estimates

Male, Below mean + sd TOCA1F
Male, Above mean + sd TOCA1F

Female, Above mean + sd TOCA1F
Female, Below mean + sd TOCA1F
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Survival Sample Estimates

Grade level

Male, Below mean + sd TOCA1F
Male, Above mean + sd TOCA1F

Female, Above mean + sd TOCA1F
Female, Below mean + sd TOCA1F
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Discrete-Time Survival Models

c f

u

x c

y u

η f

x x

f

1. 1.

u u
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Input For A Discrete-Time Survival Analysis

TITLE: A discrete-time survival analysis

DATA: FILE IS survival.dat;

VARIABLE: NAMES ARE u1-u7 race lunch cavtoca cavlunch

cntrlg y1 gender;
MISSING are all (999);

CATEGORICAL ARE u1-u7;

ANALYSIS: ESTIMATOR = MLR; 

MODEL: f BY u1-u7@1;
f ON race-gender;
f@0;

OUTPUT: TECH1 TECH8; 
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Tests Of Model Fit

Loglikelihood
H0 Value -388.074

Information Criteria
Number of Free Parameters 14
Akaike (AIC) 804.147
Bayesian (BIC) 860.132
Sample-Sized Adjusted BIC
(n* = (n + 2)/24)

815.709

Output Excerpts 
A Discrete-Time Survival Analysis
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Model Results

Thresholds
U1$1 4.707 0.694 6.782
U2$1 4.118 0.782 5.269
U3$1 3.764 0.658 5.725
U4$1 3.588 0.648 5.537
U5$1 2.958 0.677 4.371
U6$1 2.382 0.625 3.809
U7$1 1.048 0.609 1.721

F         ON
RACE -0.449 0.379 -1.183
LUNCH -0.136 0.268 -0.506
CAVTOCA -1.104 0.295 -3.738
CAVLUNCH 1.571 0.476 3.302
CNTRLG -0.336 0.213 -1.578
Y1 0.783 0.119 6.566
GENDER -0.700 0.206 -3.402

Estimates       S.E.     Est./S.E.   

Output Excerpts 
A Discrete-Time Survival Analysis (Continued)
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Multiple Latent Classes
Muthén & Masyn (2005)

Unobserved heterogeneity in hazard and survival
• Long-term survivors (one class has zero hazards, non-zero long-term 

survival probability)
• Latent classes of survival
• Growth mixtures and survival

Example: Long-term survivors
Individuals who are not censored, i.e. who experience the event within
the observation period, are not long-term survivors (known latent class
membership).
Two different latent classes of censored individuals:

Eventually experiences the event : 0…0|0…0 1
Long – term survivor : 0…0|0…0 
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Input For A Two-Class Discrete-Time
Survival Analysis

TITLE: A 2-class discrete-time survival analysis in a 
mixture modeling framework including long-term 
survivors

DATA: FILE IS long.sav;

VARIABLE: NAMES ARE u1-u7 race lunch cavtoca cavlunch
cntrlg y1 gender t1 t2;

MISSING ARE ALL (999);

CATEGORICAL ARE u1-u7;

CLASSES = c(2);

TRAINING = t1 t2;

ANALYSIS: TYPE = MIXTURE;
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Input For A Two-Class Discrete-Time
Survival Analysis (Continued)

MODEL: %OVERALL%

f BY u1-u7@1;
f ON race-gender;
[f@0];
c#1 ON race-gender;

%c#1% ! class of non-long-term survivors

[u1$1*4 u2$1*3 u3$1*3 u4$1*3.5 u5$1*2.5 u6$1*4 u7$1*1];
[f@0];
f ON race-gender;

%c#2% ! class of long-term survivors

[u1$1-u7$1@10];
f ON race-gender@0;

OUTPUT: PATTERNS TECH1 TECH8;
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Tests Of Model Fit

Loglikelihood
H0 Value -375.951

Information Criteria
Number of Free Parameters 22
Akaike (AIC) 795.903
Bayesian (BIC) 883.879
Sample-Sized Adjusted BIC
(n* = (n + 2)/24)

814.071

Entropy 0.644

Output Excerpts A Two-Class
Discrete-Time Survival Analysis
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Class 1 201.96062 0.50114
Class 2 201.03938 0.49886

FINAL CLASS COUNTS AND PROPORTIONS OF TOTAL SAMPLE SIZE
Classification Information

Class 1 190 0.47146
Class 2 213 0.52854

CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY CLASS 
MEMBERSHIP

Class Counts and Proportions

1 2

Class 1 0.916 0.084
Class 2 0.131 0.869

Average Latent Class Probabilities for Most Likely Latent Class 
Membership (Row) by Latent Class (Column)

Output Excerpts A Two-Class
Discrete-Time Survival Analysis (Continued)
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Thresholds
U1$1 4.590 0.809 5.673
U2$1 4.060 0.928 4.376
U3$1 3.654 0.804 4.542
U4$1 3.402 0.756 4.498
U5$1 2.656 0.764 3.477
U6$1 1.866 0.708 2.634
U7$1 -0.026 0.841 -0.030

Class 1

Estimates     S.E.      Est./S.E.   

Output Excerpts A Two-Class
Discrete-Time Survival Analysis (Continued)

Model Results
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C#1         ON
RACE -1.099 0.552 -1.990
LUNCH 0.446 0.712 0.627
CAVTOCA -2.459 0.824 -2.983
CAVLUNCH 2.907 1.470 1.977
CNTRLG -0.101 0.498 -0.204
Y1 0.913 0.301 3.036
GENDER 0.150 0.665 0.226

Intercepts
C#1 1.773 1.411 1.257

Class 1
F           ON

RACE 0.882 0.511 1.728
LUNCH -0.679 0.550 -1.236
CAVTOCA -0.234 0.642 -0.365
CAVLUNCH 0.540 0.809 0.667
CNTRLG -0.441 0.355 -1.242
Y1 0.605 0.218 2.774
GENDER -1.141 0.510 -2.237

Output Excerpts A Two-Class
Discrete-Time Survival Analysis (Continued)
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Further Readings On 
Discrete-Time Survival Analysis
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Continuous-Time Survival Analysis
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156

• T0: time-to-event such as time to death
• I: time of censoring
• The survival variable T and the censoring indicator c are 

defined by
T = min{T0, I}

Continuous-Time Survival Analysis

⎩
⎨
⎧

≤
>

=
I  T if0
I  T if1

c
0

0

(1)

(2)

For example, c = 1 implies T = I, the time the individual 
leaves the sample
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The Proportional Hazard Model

The proportional hazard (PH) model specifies that the 
hazard function is proportional to the baseline hazard 
function,

Two proportional hazard models: 
• Nonparametric shape for the baseline hazard function λ(t): 

Cox regression
• Parametric model for the baseline hazard function λ(t): 

parametric PH model

(3)

(4)

( ) ( ) ( )XExptth βλ=

( ) ( ) Xtth βλ += loglog
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Example 6.21: Continuous-Time Survival 
Analysis Using The Cox Regression Model

TITLE: this is an example of a continuous-time survival 
analysis using the Cox regression model

DATA: FILE = ex.6.21.dat;

VARIABLE: NAMES = t x tc;
SURVIVAL = t (ALL);
TIMECENSORED = tc (0 = NOT 1 = RIGHT);

MODEL: t ON x; 

x t



Survival Curves For Kaplan-Meier Versus 
Cox Proportional Hazard Model
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Log Cumulative Hazard Curves For 
Kaplan-Meier Versus Nonproportional

Hazard Model
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Survival Analysis With 
Non-Proportional Hazard Models

Non-proportional hazard modeling Growth and non-proportional 
hazard modeling

161

162

Continuous-Time Survival Data

t x c

7.330493 -0.378137 1.000000

0.894182 -0.880031 1.000000

1.219113 0.369423 0.000000

0.134073 1.886903 0.000000

0.598567 1.118025 0.000000

0.725646 0.642068 0.000000

1.637967 -0.324017 0.000000

5.534057 -0.760867 0.000000

3.316749 0.194822 1.000000

4.176435 -0.311791 1.000000

Event occurred at time 
1.219113 
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Translating Continuous-Time Survival Data 
To Discrete-Time Survival Data

VARIABLE: NAMES = t x c;
! t =time of death or censoring

! c = not censored (0), censored (1)

CATEGORICAL = u1-u8(*);
USEVAR = x u1-u8;

DATA: FILE = surveq1.dat;

VARIANCE = NOCHECK;

DEFINE: IF (t>2) THEN u1=0;
IF ((t>0) .AND. (t<2)) THEN u1=1-c;

! u1 = 0 if c = 1, i.e. censoring time between 0 and 2

! u1 = 1 if person died then 

IF (t>4) THEN u2=0;

IF ((t>2) .AND. (t<4)) THEN u2=1-c;

IF (t<2) THEN u2=_missing;
! u2 is missing either because u1 = 1 or because 

! u1 = 0 and c = 1
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Translating Continuous-Time Survival Data 
To Discrete-Time Survival Data (Continued)

IF (t>6) THEN u3=0;
IF ((t>4) .AND. (t<6)) THEN u3=1-c;

IF (t<4) THEN u3=_missing;

IF (t>8) THEN u4=0;

IF ((t>6) .AND. (t<8)) THEN u4=1-c;

IF (t<6) THEN u4=_missing;

IF (t>10) THEN u5=0;

IF ((t>8) .AND. (t<10)) THEN u5=1-c;

IF (t<8) THEN u5=_missing;

IF (t>12) THEN u6=0;

IF ((t>10) .AND. (t<12)) THEN u6=1-c;

IF (t<10) THEN u6=_missing;
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Translating Continuous-Time Survival Data 
To Discrete-Time Survival Data (Continued)

IF (t>14) THEN u7=0;

IF ((t>12) .AND. (t<14)) THEN u7=1-c;

IF (t<12) THEN u7=_missing;

IF (t>16) THEN u8=0;

IF ((t>14) .AND. (t<16)) THEN u8=1-c;
IF (t<14) THEN u8=_missing;

MODEL: u1-u8 ON x*1 (1);

ANALYSIS: ESTIMATOR = MLR;

TYPE = MISSING;
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Further Readings For 
Continuous-Time Survival Analysis
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Larsen, K. (2004). Joint analysis of time-to-event and multiple binary 
indicators of latent classes, Biometrics, 60(1), 85–92.

Larsen, K. (2005). The Cox proportional hazards model with a 
continuous latent variable measured by multiple binary indicators, 
Biometrics, 61(4), 1049–1055.

Singer, J.D., & Willett, J.B. (1993).  It’s about time:  Using discrete-
time survival analysis to study duration and the timing of events.  
Journal of Educational Statistics, 18(2), 155-195.

Singer, J. D. & Willett, J. B. (2003). Applied longitudinal analysis.
Modeling change and event occurrence. Oxford, UK: Oxford 
University Press.
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Analysis With Missing Data

168

Analysis With Missing Data

Used when individuals are not observed on all outcomes in the
analysis to make the best use of all available data and to avoid
biases in parameter estimates, standard errors, and tests of model fit.

Types of Missingness

• MCAR -- missing completely at random
• Variables missing by chance
• Missing by randomized design
• Multiple cohorts assuming a single population

• MAR -- missing at random
• Missingness related to observed variables
• Missing by selective design

• Non-Ignorable (NMAR)
• Missingness related to values that would have been observed
• Missingness related to latent variables
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Estimation With Missing Data
Types of Estimation (Little & Rubin, 2002)

• Estimation using listwise deleted sample
• When MCAR is true, parameter estimates and s.e.’s are 

consistent but estimates are not efficient
• When MAR is true but not MCAR, parameter estimates and 

s.e.’s are not consistent
• Maximum likelihood using all available data

• When MCAR or MAR is true, parameter estimates and s.e.’s 
are consistent and estimates are efficient

• Selection and pattern-mixture modeling – used for non-
ignorable missingness

• Imputation
• Mean and regression imputation – underestimation of 

variances and covariances
• Multiple imputation using all available data – a Bayesian 

approach – credibility intervals are Bayesian justifiable 
under MCAR and MAR
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Weighted Least Squares 
Estimation With Missing Data

Weighted least squares for categorical and censored outcomes

• Assumes MCAR when there are no covariates

• Allows MAR when missingness is a function of covariates
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MCAR: Missing By Design

η

y2

y3

y1

η

y2

y3

y1

y1 y2 y3 η
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Two-Cohort Growth Model

η0
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η1
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MAR

174

MAR: Bivariate, Monotone Missing Case

x

y

L H

yi = α + βxi + ζi

E(ζ) = 0, V(ζ) = 
E(x) = μx, V(x) = 

2
ζσ

2
xσ

▫ Data Matrix:

Complete Data
Group

Missing Data

x y

nH

nL
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Missing At Random (MAR): 
Missing On y In Bivariate Normal Case

xi / (nL + nH) =
nL + nH

i = 1

nL xL + nH xH
μx = Σ nL + nH

, (52)

nL + nH

(xi - μx)2 / (nL + nH)
i = 1

σxx = Σ . (53)
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estimated by the complete-data (listwise present) sample 
(sample size nH)

α = y – β x , (55)
β = syx / sxx , (56)

σζζ = syy – / sxx . (57)2
yxs

This gives the ML estimates of μy and σyy, adjusting the 
complete-data sample statistics: 

μy = α + β μx = y + β (μx – x), (58)

σyy = σζζ + β2 σxx = syy + β2 (σxx – sxx). (59)

Missing At Random (MAR): Missing On y 
In Bivariate Normal Case (Continued)

Consider the regression
yi = α + β xi + ζi (54)
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Correlates Of Missing Data
• MAR is more plausible when the model includes covariates 

influencing missing data

• Correlates of missing data may not have a “causal role” in 
the model, i.e. not influencing dependent variables, in 
which case including them as covariates can bias model 
estimates
• Multiple imputation (Bayes; Schafer, 1997) with two 

different sets of observed variables
− Imputation model
− Analysis model

• Modeling (ML)
− Including missing data correlates not as x variables but as 

“y variables,” freely correlated with all other observed 
variables

Recent overview in Schafer & Graham (2002).
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Missing On X

• Regular modeling concerns the conditional distribution

[y | x]    (1)

that is, as in regular regression the marginal distribution of 
[x] is not involved.  This is fine if there is no missing on x in 
which case considering

[y | x]

gives the same estimates as (Joreskog & Goldberger, 1975) 
considering the joint distribution

[y, x] = [y | x]  [x]
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Missing On X (Continued)

• With missing on x, ML under MAR must make a 
distributional assumption about [x], typically normality.  
The modeling then concerns

[y, x] = [y | x]  [x]      (2)

which with missing on [x] is an expanded model that makes 
stronger assumptions as compared to (1).

• The LHS of (2) shows that y and x are treated the same -
they are both “y variables” in Mplus terminology. This is the 
default in Mplus when all y’s are continuous. In other cases, 
x’s can be turned into “y’s” e.g. by the model statement

x1-xq;
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Technical Aspects Of Ignorable Missing Data:
ML Under MAR

Likelihood: log [yi | xi]. (87)
i = 1
Σ
n

With missing data on y, the ith term of (87) expands into
[yi , yi , mi | xi], (88)

where mi is a 0/1 indicator vector of the same length as yi .
The likelihood focuses on the observed variables,

[yi , mi | xi] =   [yi , yi | xi] [mi | yi     yi , xi] dyi , (89)
which, when assuming that missingness is not a function of
yi (that is, assuming MAR),

obs mis

obs obs mis obs mis mis

mis
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=   [yi ,yi | xi]  dyi [mi | yi , xi], (90)
= [yi | xi] [mi | yi , xi]. (91)

With distinct parameter sets in (91), the last term can be ignored 
and maximization can focus on the [yi | xi] term. This leads to 
the standard MAR ignorable missing data procedure. 

obs mis mis obs

obs obs

obs

Technical Aspects Of Ignorable Missing Data:
ML Under MAR (Continued)
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AMPS Data
The data are taken from the Alcohol Misuse Prevention Study
(AMPS). Forty-nine schools with a total of 2,666 students
participated in the study. Students were measured seven times
starting in the Fall of Grade 6 and ending in the Spring of Grade 12.

Data for the analysis include the average of three items related to
alcohol misuse:

During the past 12 months, how many times did you

drink more than you planned to?
feel sick to your stomach after drinking?
get very drunk?

Responses:   (0) never, (1) once, (2) two times,
(3) three or more times

Four of the seven timepoints are studied: Fall Grade 6, Spring
Grade 6, Spring Grade 7, and Spring Grade 8.
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amover0 amover1 amover2 amover3

i s
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Input For AMPS Growth Model 
With Missing Data

TITLE: AMPS growth model with missing data

DATA: FILE IS amps.dat;

VARIABLE: NAMES ARE caseid
amover0 ovrdrnk0 illdrnk0 vrydrn0

amover1 ovrdrnk1 illdrnk1 vrydrn1

amover2 ovrdrnk2 illdrnk2 vrydrn2
amover3 ovrdrnk3 illdrnk3 vrydrn3

amover4 ovrdrnk4 illdrnk4 vrydrn4

amover5 ovrdrnk5 illdrnk5 vrydrn5
amover6 ovrdrnk6 illdrnk6 vrydrn6;

USEV = amover0 amover1 amover2 amover3;

MISSING = ALL (999);
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Input For AMPS Growth Model 
With Missing Data (Continued)

MODEL: i s | amover0@0 amover1@1 amover2@3 amover3*5;
amover1-amover3 PWITH amover0-amover2; 

OUTPUT: PATTERNS SAMPSTAT MODINDICES STANDARDIZED;
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Output Excerpts AMPS Growth Model
With Missing Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AMOVER0 x x x x x x x x
AMOVER1 x x x x x x x x
AMOVER2 x x x x x x x x
AMOVER3 x x x x x x x x

Summary of Data
Number of patterns 15

SUMMARY OF MISSING DATA PATTERNS

Pattern Frequency Pattern Frequency Pattern Frequency
1 685 6 29 11 104
2 143 7 11 12 237
3 73 8 64 13 6
4 164 9 866 14 1
5 65 10 208 15 3

MISSING DATA PATTERNS

MISSING DATA PATTERN FREQIENCIES
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Output Excerpts AMPS Growth Model
With Missing Data (Continued)

COVARIANCE COVERAGE OF DATA

AMOVER0 AMOVER1 AMOVER2 AMOVER3

AMOVER0 0.464
AMOVER1 0.401 0.933
AMOVER2 0.347 0.715 0.753
AMOVER3 0.314 0.650 0.610 0.682

Minimum covariance coverage value   0.100

PROPORTION OF DATA PRESENT

Covariance Coverage

188

Output Excerpts AMPS Growth Model
With Missing Data (Continued)

Tests Of Model Fit

Chi-square Test of Model Fit

Value 0.011
Degrees of Freedom 1
P-Value 0.9177

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.000
90 Percent C.I. 0.000  0.019
Probability RMSEA <= .05     0.997
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I          |
AMOVER0 1.000 0.000 0.000 0.426 0.921
AMOVER1 1.000 0.000 0.000 0.426 0.774
AMOVER2 1.000 0.000 0.000 0.426 0.645
AMOVER3 1.000 0.000 0.000 0.426 0.529

S          |
AMOVER0 0.000 0.000 0.000 0.000 0.000
AMOVER1 1.000 0.000 0.000 0.109 .198
AMOVER2 3.000 0.000 0.000 0.327 0.494
AMOVER3 6.244 0.426 14.645 0.680 0.843

S          I
WITH -0.007 0.003 -2.278 -0.146 -0.146

AMOVER1  WITH
AMOVER0 -0.022 0.011 -2.010 -0.022 -0.085

AMOVER2  WITH
AMOVER1 0.017 0.007 2.505 0.017 0.047

AMOVER3  WITH
AMOVER2 -0.001 0.027 -0.050 -0.001 -0.003

Model Results

Output Excerpts AMPS Growth Model
With Missing Data (Continued)

Estimates     S.E.  Est./S.E.    Std     StdYX
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Output Excerpts AMPS Growth Model
With Missing Data (Continued)

Residual Variances
AMOVER0 0.033 0.013 2.509 0.033 0.152
AMOVER1 0.123 0.011 10.950 0.123 0.406
AMOVER2 0.190 0.017 11.461 0.190 0.433
AMOVER3 0.091 0.068 1.340 0.091 0.140

Variances
I 0.182 0.014 12.891 1.000 1.000
S 0.012 0.002 5.378 1.000 1.000

Means
I 0.200 0.010 19.391 0.469 0.469
S 0.057 0.005 11.858 0.520 0.520

Intercept
AMOVER0 0.000 0.000 0.000 0.000 0.000
AMOVER1 0.000 0.000 0.000 0.000 0.000
AMOVER2 0.000 0.000 0.000 0.000 0.000
AMOVER3 0.000 0.000 0.000 0.000 0.000
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Output Excerpts AMPS Growth Model
With Missing Data (Continued)

R-SQUARE

Observed
Variable R-Square

AMOVER0 0.848
AMOVER1 0.594
AMOVER2 0.567
AMOVER3 0.860
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AMPS: Estimated Growth Curves
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Missing Data Correlates Using ML

194

Missing Data Correlates

Handling missing-data-related variables that are different from 
analysis variables:

• Multiple imputation
• ML using missing data correlates
• References:

– Collins, Schafer, Kam (2001) in Psych Methods
– Graham (2003) in SEM
– Enders and Peugh (2004) SEM
– Savalei and Bentler (2007)
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f2

y1 y2 y3 y4 y5

Model Of Interest
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f1 f2

m1 m2 m3 m4 m5

y1 y2 y3 y4 y5z1 z2 z3 z4 z5

Time 1 Time 2

missing 
data

z y

Data-Generating Model
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f1 f2

y1 y2 y3 y4 y5z1 z2 z3 z4 z5

Time 1 Time 2

missing 
data

z y

Full Analysis Model (ML Under MAR)
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missing 
data

z y
VARIABLE: NAMES = y1-y5 z1-z5;

USEV = y1-y5;
AUXILIARY = (M) z1-z5;
MISSING = ALL(999); 

MODEL: f2 BY y1-y5; 

Simple Analysis Model (ML Under MAR)

f2

y1 y2 y3 y4 y5z1 z2 z3 z4 z5

Time 1 Time 2
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Monte Carlo Simulation Results (N = 200)
Y with z as aux

ESTIMATES S.E. M.S.E. 95%

Population Average Std. Dev. Average Cover

F2 BY

Y1 0.7000 0.6914 0.0820 0.0766 0.0067 0.9400

Y2 0.7000 0.6854 0.0829 0.0766 0.0070 0.9300

Y3 0.7000 0.6947 0.0650 0.0767 0.0042 0.9600

Y4 0.7000 0.6934 0.0719 0.0767 0.0052 0.9600

Y5 0.7000 0.6911 0.0804 0.0761 0.0065 0.9300

Y alone

F2 BY

Y1 0.7000 0.6482 0.0869 0.0797 0.0102 0.890

Y2 0.7000 0.6392 0.0861 0.0803 0.0110 0.850

Y3 0.7000 0.6450 0.0751 0.0802 0.0086 0.900

Y4 0.7000 0.6474 0.0741 0.0802 0.0082 0.910

Y5 0.7000 0.6463 0.0825 0.0796 0.0096 0.890
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References

Asparouhov & Muthen (2008). Auxiliary variables predicting 
missing data. Technical report. www.statmodel.com.
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LSAY Estimated Means
Math Total Score
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ML Under MAR Listwise ML Under MAR, Correlates Max N

MAR sample size = 3102
Listwise sample size = 782
Max N sample size = 3065, 2581, 2241, 2040, 1593, 1168
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Input Excerpts LSAY Math Mean 
Using Missing Data Correlates

USEV = math7 math8 math9 math10 math11 math12; 

AUXILIARY = (M) female mothed homeres expel arrest 
hisp black hsdrop 
expect droptht7 
lunch mstrat;

DEFINE: lunch = lunch/100;

mstrat = mstrat/1000;

MODEL: math7 WITH math8-math12;

math8 WITH math9-math12;

math9 WITH math10-math12;

math10 WITH math11-math12;
math11 WITH math12;

PLOT: TYPE = PLOT3;

SERIES = math7-math12(*);
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Non-Ignorable Missing Data

204

Selection modeling:  [y | x] [m | y, x]. Different approaches to [m | y, x]:

Little & Rubin (2002) book, Little (2008) handbook chapter: overview
Diggle & Kenward (1994) in Applied Statistics:  

predicting from y, y* (y* is non-ignorable dropout)
Wu & Carroll (1988), Wu & Bailey (1989) in Biometrics: 

predicting from the slope s 

Pattern-mixture modeling:  [m | x] [y | m, x].  Different approaches to [y | m, x]:

Little & Rubin (2002), Little (2008): overview
Conventional approach: predicting i, s from m
Roy (2003) in Biometrics: 

predicting i, s from a latent class variable c (missing data patterns)

Non-Ignorable Missing Data
Modeling Approaches And References
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Shared-parameter modeling:

Albert & Follman (2008) handbook chapter: overview
Beunckens et al (2008) in Biometrics:  using a latent class variable c and i, s

Non-Ignorable Missing Data
Modeling Approaches And References 

(Continued)

Non-Ignorable Missing Data Modeling 
In Longitudinal Studies

• Intermittent missingness versus dropout
• Muthén, B., Asparouhov, T., Hunter, A. & Leuchter, A. 

(2010). Growth modeling with non-ignorable dropout: 
Alternative analyses of the STAR*D antidepressant trial. 
Submitted for publication.

• Applied to STAR*D antidepressant trial data (n=4041)
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STAR*D Antidepressant Trial

• STAR*D multi-site NIMH antidepressant trial with n = 4041
• Subjects treated with citalopram (Level 1). No placebo group
• Clinician-rated QIDS depression score measured at baseline 

and weeks 2, 4, 6, 9, and 12
• 25% have complete data, 60% have monotone (dropout) 

missing data patterns, 14% have non-monotone missing data 
patterns

• Coverage at baseline and weeks 2, 4, 6, 9, and 12: 1.00, 0.79, 
0.69, 0.68, 0.57, and 0.39

• Reasons for leaving Level 1: Remission (moved to follow-up), 
medication inefficient or not tolerated (moved to Level 2), 
study exit
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STAR*D Antidepressant Trial
Total sample Next level

Follow-up Exit study

208



Selection Modeling
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Diggle-Kenward selection modeling Beunckens mixture model 
(mixture Wu-Carroll model)

Selection modeling (d's are survival indicators)

Input Excerpts Diggle-Kenward 
Selection Modeling

210

DATA: FILE = StarD Ratings 1-23-09.dat; 

VARIABLE: NAMES = …

… ;

MISSING = ALL (-9999); 
USEV = y0 y1 y2 y3 y4 y5
d1 d2 d3 d4 d5;
CATEGORICAL = d1 d2 d3 d4 d5;

DATA MISSING: NAMES = y1 y2 y3 y4 y5;
TYPE = SDROPOUT; 
BINARY = d1-d5;

ANALYSIS: PROCESS = 4; 
ALGORITHM = INTEGRATION;
INTEGRATION = MONTECARLO;
INTERACTIVE = control.dat;



Input Excerpts Diggle-Kenward 
Selection Modeling (Continued)
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MODEL: i s q | y0@0 y1@.2 y2@.4 y3@.6 y4@.9 y5@1.2; 
d1 ON y0 (beta2)
y1 (beta1);
d2 ON y1 (beta2)
y2 (beta1);
d3 ON y2 (beta2)
y3 (beta1);
d4 ON y3 (beta2)
y4 (beta1);
d5 ON y4 (beta2)
y5 (beta1);

PLOT: TYPE = PLOT3;
SERIES = y0-y5 (s);

OUTPUT: TECH1 SAMPSTAT RESIDUAL STANDARDIZED;

Pattern-Mixture Modeling

Conventional pattern-mixture modeling Roy latent class dropout modeling 

Pattern-mixture modeling (d’s are dropout dummy variables)
212



Input Excerpts Pattern-Mixture Modeling

TITLE:

DATA: FILE = StarD Ratings 1-23-09.dat; 

VARIABLE: NAMES = …

… ;

MISSING = ALL (-9999); 
USEV = y0 y1 y2 y3 y4 y5
d1 d2 d3 d4 d5;

DATA MISSING: NAMES = y1 y2 y3 y4 y5;
TYPE = DDROPOUT; 
BINARY = d1-d5;
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Input Excerpts Pattern-Mixture Modeling
(Continued)

MODEL: i s q | y0@0 y1@.2 y2@.4 y3@.6 y4@.9 y5@1.2;
i-q ON d4-d5;
i ON d1 d2 d3;
s ON d3;
s ON d1 (1); 
s ON d2 (1);
q ON d1 (2);
q ON d2 (2);
q ON d3 (2);

PLOT: TYPE = PLOT3;
SERIES = y0-y5 (s);

OUTPUT: TECH1 SAMPSTAT RESIDUAL STANDARDIZED;
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Input Excerpts Roy 4-Class 
Latent Dropout Modeling

215

TITLE:

DATA: FILE = StarD Ratings 1-23-09.dat; 

VARIABLE: NAMES = …

… ;

MISSING = ALL (-9999); 
USEV = y0 y1 y2 y3 y4 y5
d1-d5;

CLASSES = c(4);

DATA MISSING: NAMES = y1 y2 y3 y4 y5;
TYPE = DDROPOUT; 
BINARY = d1-d5;

ANALYSIS: TYPE = MIXTURE; 
PROCESS = 4(STARTS); 
INTERACTIVE = control.dat;
STARTS = 200 40;

Input Excerpts Roy 4-Class 
Latent Dropout Modeling (Continued)

216

MODEL: %OVERALL%
i s q | y0@0 y1@.2 y2@.4 y3@.6 y4@.9 y5@1.2; 
c ON d1-d5;

PLOT: TYPE = PLOT3;
SERIES = y0-y5 (s);

OUTPUT: TECH1 SAMPSTAT RESIDUAL STANDARDIZED;



STAR*D Estimated Mean Growth Curves

Depression mean curves estimated under MAR, Diggle-
Kenward selection modeling, and Roy latent dropout 
modeling
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STAR*D Estimated Mean Growth Curves 
Under 4-Class Roy Model

4-class Roy latent dropout model

218



STAR*D Estimated Mean Growth Curves 
Under 4-Class MAR
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Multiple Imputation Analysis In Mplus

• Multiply imputed data an input data alternative

• Estimates and SEs aggregated over the analyses

• Model testing 
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